viernes, 5 de septiembre de 2014

Magnitud

Magnitud 

La magnitud es una propiedad que poseen los fenómenos o las relaciones entre ellos, que permite que puedan ser medidos (expresados por números reales no negativos y usando la unidad pertinente). Dicha medida, representada por una cantidad.
Una magnitud es el resultado de una medición; las magnitudes matemáticas tienen definiciones abstractas, mientras que las magnitudes físicas se miden con instrumentos apropiados.
Los griegos distinguían entre varios tipos de magnitudes, incluyendo:
Probaron que los dos primeros tipos no podían ser iguales, o siquiera sistemas isomorfos de magnitud. No consideraron que las magnitudes negativas fueran significativas, y el concepto se utilizó principalmente en contextos en los que cero era el valor más bajo.

Magnitudes Escalares

Las magnitudes escalares son aquellas que quedan totalmente determinadas dando un sólo
número real y una unidad de medida. Ejemplos de este tipo de magnitud son la longitud de un
hilo, la masa de un cuerpo o el tiempo transcurrido entre dos sucesos. Se las puede representar
mediante segmentos tomados sobre una recta a partir de un origen y de longitud igual al número
real que indica su medida. Otros ejemplos de magnitudes escalares son la densidad; el volumen;
el trabajo mecánico; la potencia; la temperatura.

Magnitudes Vectoriales

A las magnitudes vectoriales no se las puede determinar completamente mediante un número
real y una unidad de medida. Por ejemplo, para dar la velocidad de un móvil en un punto del
espacio, además de su intensidad se debe indicar la dirección del movimiento (dada por la recta
tangente a la trayectoria en cada punto) y el sentido de movimiento en esa dirección (dado por
las dos posibles orientaciones de la recta). Al igual que con la velocidad ocurre con las fuerzas:
sus efectos dependen no sólo de la intensidad sino también de las direcciones y sentidos en que
actúan. Otros ejemplos de magnitudes vectoriales son la aceleración; el momentum o cantidad de
movimiento; el momentum angular. Para representarlas hay que tomar segmentos orientados, o
sea, segmentos de recta cada uno de ellos determinado entre dos puntos extremos dados en un

cierto orden. 

No hay comentarios.:

Publicar un comentario